On bipartite 2-factorizations of kn - I and the Oberwolfach problem

نویسندگان

  • Darryn E. Bryant
  • Peter Danziger
چکیده

It is shown that if F1, F2, . . . , Ft are bipartite 2-regular graphs of order n and α1, α2, . . . , αt are non-negative integers such that α1+α2+· · ·+αt = n−2 2 , α1 ≥ 3 is odd, and αi is even for i = 2, 3, . . . , t, then there exists a 2-factorisation of Kn−I in which there are exactly αi 2-factors isomorphic to Fi for i = 1, 2, . . . , t. This result completes the solution of the Oberwolfach problem for bipartite 2factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oberwolfach rectangular table negotiation problem

We completely solve certain case of a “two delegation negotiation” version of the Oberwolfach problem, which can be stated as follows. Let H(k, 3) be a bipartite graph with bipartition X = {x1, x2, . . . , xk}, Y = {y1, y2, . . . , yk} and edges x1 y1, x1 y2, xk yk−1, xk yk , and xi yi−1, xi yi , xi yi+1 for i = 2, 3, . . . , k − 1. We completely characterize all complete bipartite graphs Kn,n ...

متن کامل

Regular Oberwolfach Problems and Group Sequencings

We deal with Oberwolfach factorizations of the complete graphs Kn and K n *, which admit a regular group of automorphisms. We show that the existence of such a factorization is equivalent to the existence of a certain difference sequence defined on the elements of the automorphism group, or to a certain sequencing of the elements of that group. In the particular case of a hamiltonian factorizat...

متن کامل

A Quantitative Approach to Perfect One-Factorizations of Complete Bipartite Graphs

Given a one-factorization F of the complete bipartite graph Kn,n, let pf(F) denote the number of Hamiltonian cycles obtained by taking pairwise unions of perfect matchings in F . Let pf(n) be the maximum of pf(F) over all one-factorizations F of Kn,n. In this work we prove that pf(n) > n2/4, for all n > 2. 1 Perfect one-factorizations A one-factorization of a graph G is a partition of its set o...

متن کامل

The Directed Anti-Oberwolfach Solution: Pancyclic 2-Factorizations of Complete Directed Graphs of Odd Order

The directed anti-Oberwolfach problem asks for a 2-factorization (each factor has in-degree 1 and out-degree 1 for a total degree of two) of K2n+1, not with consistent cycle components in each 2-factor like the Oberwolfach problem, but such that every admissible cycle size appears at least once in some 2-factor. The solution takes advantage of both Piotrowski’s decomposition techniques used to ...

متن کامل

Solutions to the Oberwolfach problem for orders 18 to 40

The Oberwolfach problem (OP) asks whether Kn (for n odd) or Kn minus a 1-factor (for n even) admits a 2-factorization where each 2-factor is isomorphic to a given 2-factor F . The order n and the type of the 2-factor F are the parameters of the problem. For n ≤ 17, the existence of a solution has been resolved for all possible parameters. There are also many special types of 2-factors for which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2011